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We have investigated the lift force on a small isolated particle which is attached to 
a flat smooth surface and embedded within the viscous sublayer of the turbulent 
boundary layer over this surface. We have developed a novel experimental technique 
with which it is possible to measure both the mean and fluctuating lift force by 
gluing the particle on top of a silicium cantilever. The deflection of this cantilever 
is measured with a focused laser beam. The sensitivity of the focus detection system 
allows us to measure a lift force with an average value around lO-'N and with a 
standard deviation of approximately 5% of the mean. This means that our device is 
at least a factor of 100 more sensitive than previous devices and at the same time 
able to measure the lift forces on smaller particles. Data for the mean lift force 
( F Z )  as a function of the particle radius (a+) ,  where both parameters have been 
non-dimensionalized with the kinematic viscosity v and the friction velocity u., are 
obtained in the range 0.3 < a+ < 2. The data support the relationship: FL+ = (56.9 & 
1.1) (u+)1.87k0.04. Also results on the fluctuating lift force have been obtained. We find 
that the ratio of the r.m.s. to the mean lift force is approximately 2.8. 

1. Introduction 
The force on a small particle attached to a flat surface and embedded in a shear 

flow is not only interesting from a pure fluid mechanics point of view but it also has 
many applications. Examples are entrainment and resuspension of particles occurring 
in erosion due to e.g. sand or dust storms and in the motion of sediments or sand at 
the bottom of rivers and lakes. Human activity may also cause particle entrainment, 
e.g. dust from coal stockpiles. The forces on particles in the neighbourhood of a 
surface are also important for the opposite case of deposition on a wall for example 
in the chemical industry where one is interested in the behaviour of catalyst particles 
near a wall. 

In this study we restrict ourselves to one of the forces that acts on a single particle 
attached to a smooth and flat surface, namely the lift force. This force, in combination 
with the other forces that act on the particle, such as gravity, adhesion and drag, plays 
a role in its resuspension. However, a lift force large enough to be able to separate the 
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particle from the surface is only one of the mechanisms responsible for resuspension. 
It may also be caused by particle interactions, such as collisions followed by rolling 
motions. For an extensive overview of these processes leading to resuspension we 
refer to Bagnold (1961) and Philips (1980). 

We aim to measure in a turbulent boundary layer the lift force on a particle, so 
small that it is totally embedded in the so-called viscous sublayer. This is the region 
of the turbulent boundary layer nearest to the wall. As the name suggests, the flow 
in this layer is dominated by viscous forces. However, the flow is also influenced by 
the turbulence above the viscous sublayer and therefore highly non-stationary. This 
means that apart from a mean lift force on the particle due to the mean shear, we 
can also expect a strongly fluctuations force. This fact together with the rather small 
magnitude of the force makes this a non-trivial experiment. 

Let us first review the previous attempts to measure the lift force on a particle that 
have been reported in the literature. One of the first was Jeffreys (1929) who tried to 
measure the force on a cylinder. From his simple laboratory experiments, the accuracy 
of which he questioned himself, no significant lift force could be deduced. Bagnold 
(1974) measured the forces on moving and rotating bodies in a boundary layer flow 
in a water channel. The bodies were a cylinder, 8 cm long, and a sphere. Both were 
1.6 cm in diameter and so they spanned several regimes of the boundary layer. These 
experiments established the existence of a lift force acting on the particles and that 
this force points away from the wall. Eichhorn & Small (1964) measured the lift 
and drag force on small spherical particles near a wall in an axisymmetric Poiseuille 
flow. The diameters of the spheres ranged from 1.5 to 3.2 mm. They attempted to 
obtain a direct correlation between the lift force and other parameters, such as the 
particle Reynolds number, the flow velocity and the position of the sphere in the 
tube. A power-law relationship was suggested but, unfortunately, the data were not 
sufficiently extensive to reliably define this relationship. 

The first lift force sensor for a single particle fixed to the wall was designed by Hille, 
Megens & Tessmer (1982). The sensor was later modified and further experiments were 
done by Radecke & Schulz-Dubois (1988). This lift sensor used very large particles, 
about 1 cm in diameter, in a water channel. Another lift force sensor was developed by 
Hall (1988) for smaller particles, 1 to 5 mm in diameter, in a wind tunnel. Rosenthal 
& Sleath (1986) measured the lift force on a particle in an oscillatory flow in a water 
channel in order to study sediment transport. The apparatus is almost the same as 
the one used by Radecke & Schulz-Dubois. They observed the lift force as a function 
of the oscillating frequency and of the height of the free surface above the wall. 

All these lift force sensors were based on the same basic design, i.e. a small particle 
attached to a rod or wire that is guided through a small hole in the wall. The lift force 
was measured with strain gauges connected to the rod or wire. Here, we shall consider 
the set-up of Hall in somewhat more detail as background for our own experiments. 
His apparatus was installed in a wind tunnel and used to measure the lift force on 
particles with a diameter of 1-5 mm. The particles, which were in the lower part 
of a turbulent boundary layer, were attached to a thin tungsten wire that passed 
through a narrow hole in the surface and was centered by means of three bronze 
sheet springs to avoid contact between the wall and the wire. The distance between 
the particle and the plate could be varied by manipulating the mounting system under 
the surface. The force sensing element was a commercially available force transducer 
and the geometric arrangement of the transducer was chosen such that movement of 
the transducer load button was predominantly along one direction. The system could 
be tilted in order to minimize the influence of the drag force on the measured lift 
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force. Based on his experiments Hall presented the following relationship between 
the mean lift force (FL)  and the particle radius (a) :  

au, 2.31+0.02 
- = (20.90 & 1.57) (-) FL 
PV2 V 

, 

where p is the density and v is the kinematic viscosity of the fluid; u. is the friction 
velocity to be defined in $4. In all experiments of Hall, the particle penetrated the 
viscous sublayer and protruded into the buffer layer or even the logarithmic layer. 
It is then no longer subjected to a mean velocity with constant shear only, as is the 
case for particles completely embedded in the viscous sublayer and this may have 
influence on the lift force. 

The lift force on a small particle in a shear flow has been also the subject of 
many theoretical studies. All these theories apply primarily to small particle Reynolds 
numbers, i.e. au,/v < 0.01, where up is a characteristic velocity scale, because in 
this case the so-called Stokes approximation can be applied. However to calculate 
the lift force, the Stokes equations are not sufficient due to their property of time 
reversibility. This means that the inertia terms to a first-order correction (the Oseen 
approximation) must be included although it should be noted that in the presence of a 
wall the Oseen approximation does not include all the leading-order effects of inertia. 

Saffman (1965) derived an expression for the lift force on a sphere in a linear 
unbounded shear flow: 

6.46vpa2 VKO.~ 
FL = v0.5 , (1.2) 

where V is the difference between the velocity of the particle centre and of the 
undisturbed flow at the position of the centre and K denotes the velocity gradient. 
Saffman states that if one includes higher-order approximations an additional term is 
found, so that the total lift force becomes 

6.46vpa2 VKO.~ 11 
- - p ~ ~ a ~ .  

v0.5 8 
FL = (1.3) 

Saffman emphasizes that other additional terms of the same order as this one come 
from the outer expansion. However these additional terms are not calculated and 
therefore only relation (1.2) should be used in the calculations. Leighton & Acrivos 
(1985) have studied the lift force on a particle fixed to a wall in a linear shear flow. 
They show that the lift force is positive so that the particle experiences a force away 
from the wall. This lift force is given by 

For further theoretical results we refer to McLaughlin (1989, 1991, 1993) and Cherukat 
& McLaughlin (1994). In the latter publication a rather complete treatment is given 
of the force on a small particle in a shear flow in the neighbourhood of a surface. 
The two theoretical expressions (1.2) and (1.4) are found to be limiting cases. 

Given the results discussed above, some points should be noted. First the ex- 
perimental set-up of Hille et al. (1982), Rosenthal & Sleath (1986), Radecke & 
Schulz-Dubois (1988) and Hall (1988), which are all based on a similar design, 
presents a number of problems. For instance, bending of the support needle of the 
particle may result in contact with the wall of the hole and consequently in friction 
which in turn may influence the lift force measurement. Also the limited sensitivity 
and stability of the piezo-electric elements or the strain gauges may cause problems. 
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FIGURE 1. Schematic of the new experimental set-up. 

Furthermore, the particles used were mostly so large that they extended beyond the 
viscous sublayer and are thus not representative for a particle in a linear shear flow. 
Finally, all the previous experimental studies have only considered the mean force, 
while we know that the lift force on the particle is highly non-stationary. With 
respect to the theoretical investigations, we may again mention that they are only 
valid for very small particle Reynolds numbers. In many practical situations the 
Reynolds number is 0(1) and it is far from clear how the theoretical results should 
be extrapolated to this range of Reynolds numbers. 

Considering these points, we feel that accurate information on the lift force on 
a small sphere immersed in the viscous sublayer of a turbulent boundary layer 
and at particle Reynolds numbers of 0(1) is still lacking, especially with respect 
to the fluctuations of this force. The latter is especially important when one needs 
information on the instantaneous lift force, e.g. to determine resuspension of a particle. 
Therefore, measurement of this fluctuating lift force is the goal that we pursue in this 
research. For this we have designed and built a new measuring device with which we 
have carried out experiments. 

In the following section we will give a brief description of the experimental set-up. 
In $3 we discuss our measurement procedure. The measurement results and their 
analysis are presented in $4. Finally in 95 comparison with theory is discussed. 

2. Experimental set-up 
To measure the fluctuating lift force on a small particle we have developed a new 

measuring device capable measurements with a mean value of around lO-*N and with 
sensitivity of approximately 10-”N. The time resolution is 50 kHz. The experimental 
set-up is schematically shown in figure 1. A detailed description of this set-up is given 
by Mollinger, Nieuwstadt & Bessem (1995), so that we will restrict ourselves here to 
a short discussion. 
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FIGURE 2. Silicium cantilever with particle and laser spot. 

A spherical particle is glued onto a flexible silicium springboard (cantilever). This 
cantilever is placed flush with the surface of the flat plate. Owing to the lift force 
exerted on the particle the cantilever bends slightly upward. This deflection is 
measured by means of a diode laser with additional optics (focus detector). A camera 
is installed to monitor the correct position of the diode-laser spot on the cantilever. 
Most of the measurements have been carried out with a hollow glass particle with a 
diameter, d,  = 120 f 1 pm. For some observations we have also used a solid plastic 
(sepharose) particle (density 1500 kg mP3) with a diameter of 218 pm. 

The flat plate, which we will call the measuring plate, is mounted together with the 
lift-measuring device in the measuring section of a closed circuit wind tunnel. The 
tunnel velocity can be varied between 0 and 12 m s-'. The contraction ratio of the 
settling chamber to the measuring section is 1.8. The measuring section has a cross- 
section of 60 cm times 60 cm with a total length of 6 m. The measuring plate is made 
of aluminium and has a length of 5 m. It is mounted at a distance of approximately 
20 cm above the bottom wall of the wind tunnel. On the plate a turbulent boundary 
layer develops generated by a trip wires 60 cm from the leading edge. The upper and 
lower walls of the wind tunnel are adjusted to compensate for the boundary layer 
growth so that a condition of zero pressure gradient is maintained over the measuring 
plate. In the measuring plate the lift force sensor is installed at 3.0 m from the leading 
edge, where the thickness of the bounda y layer is approximately 30 mm. 

The cantilever on which the particle is hued is shown in more detail in figure 2. The 
cantilever is made of silicium and is coatGd with gold on the back side for increased 
optical reflection. The force constant, defined as the ratio between the force exerted 
at the point of the cantilever and the resulting deflection of the cantilever, has been 
specified by the manufacturer (Park Scientific Instruments) as 0.032 & 2 N m-'. This 
value has been checked by modelling the measuring device with a solid glass particle 
as a simple linear spring and by calculating the resonance frequency. The result was 
found to agree with the spectral peak of time series observed for this particle (see $4). 
Given the force constant the lift force on the particle can now be calculated from the 
deflection. 

The laser system (wavelength=780 nm) used to measure the deflection of the 
cantilever is a distance-measuring system based on the principle of a focus detection 
technique. The whole system can be considered as a light pen. Such a system is able 
to measure displacements which are much smaller than the wavelength of the laser 
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FIGURE 3. Distance-voltage curve (0 mV is in focus, ‘negative’ distance - laser too close to the 

cantilever, ‘positive’ distance - laser too far from the cantilever). 

light used, e.g. an optimized standard system can measure displacements of 1 nm and 
better. For further details regarding this technique we refer to Bouwhuis et al. (1985). 
The system that we employ and which is originally part of a Philips CD player (Mark1 
CD module/CDMl), has been slightly modified by adding some optical components 
(see figure 1). The focus-error signal of the light pen is shown as a function of 
distance in figure 3, where zero volt means perfect focus and thus zero displacement. 
For the measurement of the cantilever displacement the steep portion of the curve 
(see figure 3) around 0 mV is used. In this region there is a linear relationship between 
the displacement and the electrical signal. A typical displacement of the cantilever 
of 1.00 f 0.01 pm results in a voltage change of the signal of 66.7 f 0.1 mV. The 
calibration was achieved by traversing the laser beam towards and away from the 
cantilever over a known distance and recording the voltage change produced. 

For visual inspection and positioning of the laser spot a ccd camera is used. The 
image of the cantilever is directly projected on a ccd chip connected to a television 
monitor. The whole measuring system, i.e. distance measuring system, electronics, 
traversing units, lenses and ccd camera has been built together in a single unit which 
is attached to the underside of the measuring plate, and which is enclosed in a 
cylindrical container with a streamline fairing on the outside to avoid disturbance to 
the wind tunnel flow. 

To check for possible bias in the lift force measurements and also to investigate any 
influence of the construction of the device on the measurements, we have performed 
the following tests. 

First, experiments have been carried out without a sphere attached to the cantilever. 
This allows us to investigate the effect of the vibrations of the wind tunnel and the 
surroundings (most of the experiments were carried out at night to reduce such 
vibrations) and also the influence of turbulent pressure fluctuations. Some of the 
measured statistical quantities of these experiments are given in table l(a). These 
show a mean lift force close to zero with a small standard deviation mainly due to 
fluctuations at 50 Hz related to the power source. The magnitude of this spectral 
peak is only 0.1% of the value measured at this frequency with the particle installed. 
For a more extensive data set we refer to Mollinger (1995). 
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uo (m s-') FL,moda, + 0 + Skewness Kurtosis 
FL 

0.0 5.60 x lop2 4.58 -2.60 x 2.97 
3.0 -3.73 x 4.68 -5.14 x 2.99 
6.0 3.60 x lo-' 4.91 -2.77 x lop2 3.16 
9.0 -4.14 x LO-' 5.05 1.32 x 3.06 

12.0 3.54 x lo-' 5.42 1.64 x lop2 3.26 

0.0 -3.71 x lo-' 4.63 2.90 x 3.04 
3.0 -4.71 x lo-' 4.75 6.89 x lop4 3.01 
6.0 2.39 x lo-' 4.69 5.99 x 2.99 

(a)  

( b )  

TABLE 1. Statistical quantities of the dimensionless lift force (a)  with no particle attached to the 
cantilever, and ( b )  Statistical quantities of the dimensionless lift force with a spherical plastic particle 
( d p  = 218 pm) attached to the cantilever under a cover (Mean lift force = 0). 

Second, a large spherical plastic particle was attached to the cantilever. A cover 
was placed over the particle in order to investigate the effect of the vibrations of the 
system under tunnel operating conditions. This cover could only be used at speeds 
below 9 m s-'. The measured statistical quantities for the cantilever with cover are 
given in table l (b) .  The results show the standard deviation cF to be quite similar to 
the case with no particle given in table 1, for the same reason. The contribution due 
to noise from vibration was estimated to be less than 0.1%. 

Moreover, it can be concluded from the values for the skewness and the kurtosis 
also given in table 1 that the measured distributions are highly symmetrical and that 
they are close to Gaussian. 

Based on the results of these tests, we conclude that the effect of vibrations 
and pressure fluctuations on the measured statistics of the lift force is negligible. 
Furthermore, we have found that if no particle is attached to the cantilever, no 
significant lift force is measured. This gives us confidence that we are indeed measuring 
the lift force on the particle due to the flow and that our measurements are not 
disturbed by additional unknown effects. 

The air velocity is measured with a constant-temperature hot-wire anemometer 
(single wire) with a sensitive element of 0.5 mm length and a diameter of 2.5 pm. The 
hot-wire anemometer was calibrated before and after each run against a Pitot tube 
attached to a Betz manometer within the same wind tunnel. The hot wire is used to 
measure the profile of the horizontal velocity component by traversing it normal to 
the plate. It appeared that there was no measurable effect of the cantilever (with or 
without a particle) on the velocity profile. Horizontal traverses showed that the flow 
was uniform (within 0.5%) in the spanwise direction. 

3. Measurement procedure 
The lift force measurements are all carried out using the following experimental 

procedure. 
(1) Calibration of the hot wire at a position 12 cm above the measuring plate (i.e. 

in the middle of the wind tunnel far above the boundary layer). The calibration of the 
hot-wire anemometer with the Pitot tube is corrected for pressure and temperature 
effects. 
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(2) Visual inspection of the cantilever by means of the ccd camera to check the 
position of the laser spot of the distance measuring system on the cantilever. 

(3) Adjustment and calibration of the displacement measurement device, after 
which a sensitivity test is performed to check if the device was still operating on the 
steep part of the curve shown in figure 3. 

(4) Measurement of the lift force (with a free-stream velocity between 0.8 m s-l 
and 12 m s-l). 

( 5 )  To avoid correction for baseline drift, measurements of the displacement at zero 
flow condition, before and after the measurement, are compared. The measurement is 
rejected when the difference between the observation is not within 1% of the observed 
mean value. 

(6) Recalibration of the hot wire after an observation series. The series is rejected 
if the difference with the first calibration is more than 2%. 

4. Results 
4.1. Measurement of the turbulent boundary layer 

The profiles of the mean velocity and the velocity fluctuations have been measured 
at five different wind tunnel speeds at a position 1 cm behind the lift force sensor. 

In the near-wall region the mean velocity profile is usually expressed in terms of 
the so-called law of the wall (see e.g. Monin & Yaglom 1973; Hinze 1975), which 
reads 

where the y+ = yu,/v and u+ = u/u,. The friction velocity, u,, is defined as 
u+ = f ( Y + )  (4- 1) 

0.5 

u. = (;) 
with zo the surface shear stress. 

It is well established that the turbulent boundary layer near a wall can be divided 
into three regions (Hinze 1975; Tennekes & Lumley 1972): the viscous sublayer 
(0 < y+ < 5) ,  the buffer layer ( 5  < y+ < 30) and the logarithmic layer (y+ > 30). 

We have used the logarithmic part of the measured velocity profile to calculate the 
friction velocity by fitting the data points to the expression: 

u+ = 2.441ny+ + 4.9. (4.3) 

We estimate that the accuracy of the friction velocity determined in this way is 2%. 
Its value as a function of the free-stream velocity, uo, is given in table 2. It is not 
possible to calculate the friction velocity directly from the linear profile valid near 
the wall (see figure 4). First, the hot-wire anemometer could not be calibrated with 
sufficient accuracy at the low velocities which occur in this region. Second, a hot-wire 
anemometer in close proximity to the wall (y+ < 3), suffers from enhanced cooling 
so that an apparently higher velocity is measured than in reality, as is apparent in 
figure 4. As a result, only a limited number of points could be measured in the 
viscous sublayer with reasonable accuracy and these are not sufficient to determine 
the friction velocity. Nevertheless, it seems that in the limited region where reliable 
hot-wire measurements could be made, i.e. between 3 < y+ < 5,  the observations 
scaled with u., obtained according to the procedure mentioned above, fit very closely 
to the linear profile valid in the viscous sublayer profile and this gives confidence in 
our estimate of u*. 
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uo(ms-') u.(ms-') Re, 6*(cm) @(cm) H 

4.28 0.185 8.56 x lo6 0.8783 0.6224 1.411 
6.44 0.268 1.29 x lo6 0.7996 0.5762 1.388 
8.71 0.352 1.74 x lo6 0.7340 0.5271 1.393 
10.70 0.420 2.14 x lo6 0.7262 0.5273 1.377 
12.34 0.477 2.48 x lo6 0.7375 0.5369 1.374 

TBLE 2. Free-stream velocity and corresponding friction velocities based on the logarithmic 
boundary layer. 

1 ~L I _ _ y j  I 0'- 
100 10' 1 02 103 

Y+ 
FIGURE 4. Boundary layer profile, velocity us. distance in dimensionless form. Free-stream 
velocities: 4.28, 6.44, 8.71, 10.70, 12.34 m s-'. The solid curve shows the law of the wall. 

The results for the mean velocity are shown in figure 4 and the measured velocities 
collapse very well on the law of the wall mentioned above. Other relevant parameters 
can be obtained from the mean velocity profile as a function of the Reynolds number 

(4.4) 
UOX Re, = ~ 

where the distance, x, is measured from the leading edge of the plate to the lift force 
sensor. These parameters are the displacement thickness 

V 

6* = .Im (1 - i) dy, 

and the momentum thickness 

(4.5) 

Since the hot wire could not be used below y+=3, the velocity profile in the range 
0 < y+ < 3 is obtained by extrapolation with the help of a linear profile. From these 
parameters one may calculate the shape factor as 

6* 
8 '  

H = -  (4.7) 
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U '+ 

Y +  
FIGURE 5. Velocity fluctuations as a function of the distance in dimensionless form. Free-stream 
velocity in m s-': 0, 4.28 m s-'; A, 6.44 m s-'; W, 8.71 m s-'; /, 10.70 m s-'; x, 12.34 m s-'. 

From the literature it is known that in the case of a zero pressure gradient H k: 1.4 
(see Hinze 1975, p. 633). From the experimental values given in table 2 we find 

With the data of table 3 the following relationship between the free-stream velocity 
H = 1.389 & 0.014. 

and the friction velocity is found: 

u* = ((33.23 f 4.6) + (36.18 f 0.51) uo) lop3. (4.8) 

Uncertainties in the measurement of the temperature (density and viscosity of the air) 
are taken in to account in this equation. 

The standard deviation of the horizontal velocity fluctuations is shown in figure 5. 
The measurements scaled in terms of the characteristic wall parameters collapse on 
a single profile, especially near the wall (y+ < 10). The maximum value of u+=2.6 at 
y+=l1 agrees with other the measurements. e.g. given by Monin & Yaglom (1973) and 
by Durst, Jovanovic & Sender (1993). For larger values of the dimensionless distance 
the velocity fluctuations decrease until they go rapidly to zero around y+=500, i.e. 
near the edge of the boundary layer. The exact dimensionless distance at which the 
velocity fluctuations approach zero depends on the boundary layer thickness, which 
is a function of Reynolds number based on the length of the plate (see figure 5) .  

The particles that we consider, are always smaller than the depth of the viscous 
sublayer, i.e. the dimensionless radius a+ < 5. This corresponds with almost all real 
entrainment situations. For instance, a sand particle on a flat surface with a diameter 
of 200 pm lies within the viscous sublayer if the free wind velocity over the particle 
does not exceed 8 m s-'. From its name 'viscous sublayer' one would perhaps expect 
the dynamics of this layer to be dominated by viscous effects. However, the contrary 
is true. The flow characteristics within the viscous sublayer are largely determined by 
the turbulence in the boundary layer, especially the buffer layer. As a result one finds 
in the surface layer large organized flow structures, i.e. larger than a viscous length 
scale. Examples are so-called low-speed streaks (Kline et al. 1967) and streamwise 
vortices (Brooke & Hanratty 1993; Hamilton, Kim & Waleffe 1995). It has been 
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found that flow properties in the viscous sublayer, such as the wall shear stress, are 
highly fluctuating (Chew, Khod & Li 1994 and Obi et al. 1995). The observations 
lead to a skewness factor of these wall shear stress fluctuations of around 1 and a 
kurtosis of around 5. These fluctuations must clearly have an influence on the force 
on a particle in the viscous sublayer. In particular one should expect this force to be 
strongly fluctuating. 

Finally, we note that any influence of the lift force sensor with the particle on the 
velocity measurement could not be detected. This seems quite reasonable because 
a particle smaller than the thickness of the viscous sublayer does not disturb the 
boundary layer so that the wall remains aerodynamically smooth. The velocity 
profiles measured 1 cm before and after the lift force sensor give the same results 
within 0.5%. Horizontal traverses at these positions also show that the flow is uniform 
in the lateral direction as has been already mentioned in $2. It is, however, possible 
that the particle and lift force sensor influence the local velocity profile very close 
to the wall ( y+  < 3), but this could not be investigated with the present hot-wire 
anemometer. We were also not able to determine an influence of the gap below the 
particle (see figure 1) on the lift force but we consider such influence unlikely since 
the measurement with no particle led to a zero force. We attempted to measure 
the influence of the gap on the flow profile by making vertical traverses through 
the boundary layer at several position before and after the cantilever. However no 
influence on the velocity profile could be detected. 

4.2. Lift force 

4.2.1. Measurement of the mean lift force 

given by 
The observed values of the lift force F are presented in dimensionless form (F+)  

where dimensionless particle radius a+ is defined as 
au. a+ = _. 

V 
(4.10) 

For the main set of experiments we have used the hollow glass sphere. The duration 
of each experiment is approximately 5 minutes. A measurement run is started at zero 
speed. The wind tunnel is turned on and the free-stream velocity is increased until it 
reaches that at which the observation of the lift force is to be taken. This velocity is 
kept constant for two minutes after which the wind tunnel is turned off. The reading 
of the lift sensor at the start and end of the run, i.e. at zero velocity, is used as a 
quality indicator of the measurement, following the requirement mentioned in $3. The 
advantage of performing a measurement at a single velocity is that the duration of 
each individual measurement is rather short so that fewer experiments have to be 
rejected because of baseline drift of the lift force measuring device. The results of the 
measurements are given in figure 6. Each data point displayed is the average value of 
200 independent observations made during one run. Each observation is the average 
over 0.1 s of continuous measurement at 50 kHz. The data points in figure 6 have 
been fitted with a power law using a logarithmic least-squares method and imposing 
FL=O at a+=O. The result with correlation coefficient of 0.962 reads 

FL+ = (56.9 f i.i)(a+)1.*7+o~04. (4.11) 
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FIGURE 6. Dimensionless lift force as a function of the dimensionless radius: +, hollow particle 
( d p  = 120 pm); 0, plastic particle ( d p  = 218 pm); -, FLf = 5 6 . 9 ( ~ + ) ' . ~ ~ ;  ---, F: = 33.4(~+)'.~'. 

An attempt to measure the lift force at a larger dimensionless radius by increasing 
the wind tunnel speed has not been successful. We found that for velocities above 
16 m s-' the measured mean lift force becomes almost constant. This is due to the 
fact that the cantilever reaches its maximum upward deflection of about 2 pm at a 
value of a+ = 2 or at a value of F L  = 200. 

Another attempt to measure at a larger a+ by using the larger plastic particle was 
also not successful. As could be expected the cantilever again reaches its maximum 
deflection at a dimensionless radius of 2. Another problem with this particle is 
that the resonance frequency mentioned in $2 is lower due to the larger weight of 
the particle and it falls in the range of turbulent fluctuations. Nevertheless, some 
observations at higher values of a+ could be made. The following relationship between 
the dimensionless radius and the lift force is found with a correlation coefficient of 
0.987 : 

FL+ = (33.4 f 3 . 0 ) ( ~ + ) ' . ~ ~ ' ~ . ~ ~ ,  (4.12) 

which is also shown in figure 6. 
It is however doubtful whether this measurement is completely reliable. Sources of 

possible errors are the very low resonance frequency of this system (200 Hz) and the 
initial downward bending of the cantilever due to the weight of the massive particle. 
The offset compensating the initial downward bending due to the weight of the heavy 
particle (= 8 x lO-'N) is larger than the displacement due to the mean lift force 
(= 1OP8N). Moreover, the larger contact area of the solid particle with the cantilever 
may cause an increased stiffness of the system. This would for instance explain the 
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FIGURE 7. The solid circles indicate the positions of the sensitive element of the hot-wire anemometer 
relative to the particle. First digit is vertical displacement in 100 pm, second digit is horizontal 
displacement in 100 pm, e.g. 32 means 300 pm above and 200 pm behind the particle. 

smaller coefficient in (4.12) with respect to the coefficient found in (4.11). However, 
we note that the experiments performed with both spheres lead to quite similar values 
for the exponent in the power law. 

4.2.2. Measurement of  the Jluctuating l f t  force 

Our sensor also allows measurement of the fluctuating lift force. These fluctuations 
may be important for entrainment of particles, because the extreme values of the 
lift force are primarily responsible for particle detachment from the wall. For these 
measurements, the data gathered from the hot-wire anemometer and from the lift 
force sensor, were recorded with a frequency of 50 kHz for a period of 5 s. For the 
experiments we use the hollow glass particle, the hot wire anemometer is placed at 
a number of different positions relative to the particle, as shown in figure 7. The 
hot-wire anemometer is always placed downstream of the particle since the relatively 
large prongs which hold the hot wire may introduce an unwanted disturbance of the 
flow near the particle and the lift force sensor. The lift force and the velocity statistics 
are measured at four different free-stream velocities (4.0, 6.0, 9.0, and 12.0 m s-l) and 
at six vertical positions of the hot wire, i.e. positions 11, 21, 31, 41, 51, and 81. The 
lift force and the velocity statistics at the horizontal positions 31, 32, 33, 35, and 38 
of the hot-wire anemometer are measured at three different velocities (4.0, 6.0, and 
9.0 m s-l). 

Figure 8 shows the probability curves of the dimensionless velocity, u+, at the 
various vertical positions of the hot-wire anemometer and at the four free-stream 
velocities mentioned above. In figure 9 we depict the corresponding probability curves 
for the dimensionless lift force, FL+. In both cases the values of the fluctuations are 
normalized with the mean value and the standard deviation: 

The probability curves of the velocity show that the shape of the velocity distribution 
varies weakly with the distance to the wall. The shape of the probability distribution 
of the lift force fluctuations is approximately constant as function of the hot-wire 
position (except for the lowest position), consistent with no influence by the hot wire 
on the lift force measurements. 

The statistical quantities of the dimensionless velocity fluctuations at all measure- 
ment positions (i.e. at the several horizontal and vertical positions of the hot-wire 
anemometer) are given in table 3. From the data, it can be noted that there is a 
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FIGURE 8. Probability curves of the dimensionless velocity for a number of different free-stream 
velocities and vertical positions of the hot-wire anemometer: -, 11; - -, 21 ; --, 31; --, 41; 

, 51; ----, 81. 

significant difference between the measurements at the first horizontal position (3 1) 
and the other positions (32,33,35,38). This is caused by an error in the positioning of 
the traversing mechanism for the hot-wire anemometer. The velocity is first measured 
at the vertical positions (11, 21, 31, 41, 51, 81) and then at the horizontal positions 
(32, 33, 35, 38). It is difficult to reposition the hot wire at the same height above the 
plate as the first point (31). This difference could be as large as 50 pm which explains 
the differences found in table 4. 

Comparing our results for the velocity statistics with the DNS data of Spalart 
(1988) and the experimental data of Ching, Djenide & Antonia (19954, we find good 
agreement for the mean velocities. Our results for the r.m.s. values are somewhat 
smaller than the results obtained from the other data sets. This is most probably 
due to the averaging due to the hot-wire length of 0.5 mm. Our results together 
with the observed probability functions of the lift force, allow us to conclude that at 
low free-stream velocities, the lift force is possibly slightly influenced by presence of 
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Pos. of hot wire y+ u+ mean U+ mod. Stand. dev. Skewness Kurtosis 

11 
21 
31 
41 
51 
81 
32 
33 
35 
38 

11 
21 
31 
41 
51 
81 
32 
33 
35 
38 

11 
21 
31 
41 
51 
81 
32 
33 
35 
38 

11 
21 
31 
41 
51 
81 

Free-stream velocity 4.0 m s-l 

2.84 2.84 2.80 0.29 
3.71 3.71 3.49 0.84 
4.79 4.79 4.56 1.37 
5.95 5.87 5.58 1.68 
7.04 6.71 6.48 1.95 

11.22 9.04 8.97 2.30 
3.84 3.84 3.62 0.95 
3.86 3.86 3.66 0.96 
4.06 4.06 3.85 0.99 
4.30 4.30 4.09 1.10 

Free-stream velocity 6.0 m s-l 

3.03 3.03 2.90 0.60 
5.09 5.09 4.76 1.58 
7.37 6.89 6.64 2.08 
9.38 8.15 7.93 2.29 

11.79 9.29 9.20 2.49 
17.54 11.27 11.33 2.56 
5.68 5.63 5.32 1.83 
5.51 5.48 5.27 1.71 
5.82 5.76 5.55 1.73 
6.36 6.20 5.93 1.82 

Free-stream velocity 9.0 m s-l 

3.35 3.35 3.18 0.91 
6.45 6.27 6.02 1.98 
9.61 8.27 8.17 2.37 

12.37 9.53 9.51 2.44 
15.14 10.54 10.58 2.50 
21.79 12.36 12.48 2.39 
9.35 8.12 8.04 2.30 
9.35 8.13 8.04 2.27 
9.53 8.22 8.10 2.35 
9.97 8.45 8.31 2.24 

Free-stream velocity 12.0 m s-l 
5.60 5.56 4.29 1.53 
9.38 8.14 7.94 2.41 

15.66 10.71 10.75 2.59 
20.43 12.04 12.16 2.61 
24.13 12.87 12.94 2.53 
31.63 14.22 14.33 2.33 

1.32 
1.31 
1.08 
0.69 
0.63 
0.17 
1.40 
1.15 
1.09 
1.17 

1.304 
0.819 
0.528 
0.397 
0.237 

0.722 
0.721 
0.607 
0.708 

-0.038 

1.255 
0.644 
0.253 
0.092 
0.048 

0.236 
0.244 
0.228 
0.264 

-0.129 

0.941 
0.355 
0.070 

-0.051 
-0.088 
-0.099 

TABLE 3. Statistical quantities for the dimensionless velocity. 

6.38 
5.1 1 
4.58 
3.1 1 
2.99 
2.40 
5.65 
4.41 
4.30 
4.75 

5.72 
3.39 
2.79 
2.58 
2.48 
2.33 
3.19 
3.35 
3.00 
3.24 

5.62 
3.10 
2.46 
2.40 
2.44 
2.59 
2.48 
2.53 
2.40 
2.44 

4.08 
2.59 
2.44 
2.45 
2.56 
2.70 

the hot-wire anemometer; at the higher free-stream velocities there is, however, no 
measurable influence. 

From the data on the skewness and the kurtosis of the dimensionless velocity 
fluctuations, given in table 3, it follows that very close to the wall the probability 
curve is somewhat skewed to the right and is sharper than a normal distribution. 
Farther away from the surface the skewness decreases and the distribution approaches 
a Gaussian distribution. This agrees at least qualitatively with other results which 
are primarily obtained from DNS. However, we should again mention here that the 
hot-wire anemometer cannot be very well calibrated at low velocities, and at low 



300 A.  M .  Mollinger and F. T. M .  Nieuwstadt 

Pos. of hot wire F L  (mod.-mean) Stand. dev. Skewness Kurtosis 

Free-stream velocity 4.0 m s-', u,=0.18 m s-', a+=0.71, F,f=30.1 
11 -0.688 14.80 0.034 3.43 
21 -0.937 14.52 0.318 3.22 
31 -0.169 12.02 0.490 4.97 
41 -0.685 9.13 0.313 3.62 
51 -0.28 1 9.10 0.460 3.79 
81 -0.810 8.68 0.556 4.53 
32 -0.490 10.50 0.366 3.65 
33 -0.621 9.03 0.394 3.68 
35 -0.594 8.51 0.364 3.82 
38 -0.069 8.63 0.398 3.82 

Free-stream velocity 6.0 m s-', u.=0.25 m SKI, a+=1.00, F,f=57.0 
11 -2.15 22.80 0.895 5.46 
21 -2.51 21.94 0.893 5.01 
31 -2.61 19.77 1.003 5.58 
41 -2.58 18.48 1.213 6.96 
51 -2.12 18.33 1.128 6.32 
81 -1.56 17.32 1.304 8.17 
32 -2.05 19.66 0.971 5.40 
33 -2.57 18.09 1.240 7.02 
35 -2.16 17.34 1.203 7.12 
38 -2.89 18.31 1.421 8.33 

Free-stream velocity 9.0 m s-', u,=0.36 m s-', a+=1.44, F,f=111.9 
11 -6.77 43.87 0.905 5.12 
21 -6.37 44.24 0.929 5.57 
31 -6.33 43.36 0.890 4.97 
41 -5.95 42.84 0.949 5.13 
51 -6.60 43.15 1.044 5.47 
81 -6.38 43.14 0.998 5.01 
32 -6.99 43.63 1.039 5.55 
33 -6.19 42.20 1.004 5.58 
35 -6.76 42.57 1.015 5.42 
38 -6.18 40.05 1.079 5.65 

Free-stream velocity 12.0 m s-', u,=0.47 m s-', a f= l  87, FL=183.3 
11 -4.13 107.23 -0.0536 3.19 
21 -4.73 103.12 0.0088 3.11 
31 -4.17 104.49 -0.0461 3.17 
41 -4.28 103.84 -0.0044 3.13 
51 -4.79 108.73 -0.0032 3.08 
81 -4.93 108.98 0.0140 3.07 

TABLE 4. Statistical quantities of the dimensionless lift force F z  is taken from equation (4.11). 

heights is also influenced by the presence of the wall. These effects will in particular 
influence the higher-order moments. 

In table 4 we present the statistics for the dimensionless lift force fluctuations. 
First we note that the standard deviation of the lift force fluctuations is in all cases 
significantly larger than the r.m.s. data given in table 1 which show results for when 
there is no particle attached to the cantilever and when the lift force sensor is shielded 
from the air flow by a cover. So the lift force fluctuations can be attributed to the 
velocity fluctuations in the viscous sublayer. This conclusion seems to be corroborated 
by the fact that the standard deviation of the fluctuations becomes larger when the 
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FIGURE 9. Probability curves of the dimensionless lift force for a number of different free-stream 
1 1 .  -- 21. -- 31.  -- 41' velocities and vertical positions of the hot-wire anemometer: -, , , > , 9  9 ,  

---, 51; ----, 81. 

free-stream velocity increases. Note that the measurement of the displacement of the 
cantilever, and thus of the fluctuating component of the lift force, taken at the highest 
velocities is influenced by the contribution of the resonance of the cantilever. 

Figure 9 and table 4 suggest that the probability distribution of the lift force is 
non-Gaussian with a positive skewness and a kurtosis larger than 3. The data taken 
at the free-stream velocities, u0=6 and 9 m s-I, lead to values of approximately 1 and 
5 for the skewness and the kurtosis, respectively. These values agree reasonably well 
with the data for the same velocity statistics taken at the lowest hot-wire measuring 
position as given in table 3 and also with the statistics of the wall shear stress 
measurements taken by Obi et al. (1995) as mentioned in $4.1. This suggests that the 
lift force is indeed caused be the fluctuating velocity shear near the surface. 

For the highest velocity we observe a much lower values for the skewness and the 
kurtosis. This may be explained by the fact that in this case the highest lift force 
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fluctuations will be limited by the maximum upward deflection of the cantilever. 
Furthermore, the resonance to be discussed below may also play a role. 

In figure 10 the power spectra of the dimensionless lift force fluctuations are shown 
as a function of the free-stream velocity and the vertical positions of the hot wire. In 
each case the spectrum has been scaled with the variance. The spectra for the velocity 
fluctuations appear quite standard and will not be shown; they may be found in 
Mollinger (1995). 

These power spectra show that as a function of mean velocity the effect of the 
resonance vibration discussed in 92 increases where the resonance was already. The 
contribution of the resonance peaks for mean velocities smaller than 6 m s-l is 
smaller than 0.5%, for 9 m s-l it is 5.5% and for 12 m s-l it is 29% of the total 
standard deviation. This clearly confirms our doubts, already referred to above, the 
measurements taken at the highest velocity. The resonance frequency and its higher 
harmonics appear to be 2.5, 5.0, and 10.0 kHz. The peak in figure 10 at about 7.5 kHz 
for the highest free-stream velocity, i.e. 12 m s-', is probably due to interference of 



The l f t  force on a particle in a turbulent boundary layer 303 

0.1 0.2 1 .o 2.0 10 

a+ 

FIGURE 11. Lift force as a function of the dimensionless radius. +, F: = 5 6 . 9 ( ~ + ) ' . ~ ~  (eq. (4.11), exp.); 
0, FZ = 33.4(~+)'.~* (eq. (4.12), exp.); Saffman: first-order (1965) F L  = 6 . 4 6 ( ~ + ) ~  (eq. (5.1), th.); 
second-order F,' = 6 . 4 6 ( ~ + ) ~  - 4 . 3 2 ( ~ + ) ~  (eq. (1.3), th.); Leighton & Acrivos (1985) F,' = 9 . 2 2 ( ~ + ) ~  
(eq. (5.2), th.); Hall (1988) F; = 2 0 . 9 ( ~ + ) ~ . ~ ~  (eq. (5.3), exp.). 

the first two resonance peaks. The resonance vibrations are nevertheless far less 
pronounced than the ones which occur when the large (heavy) particle is used. 

5. Comparison with theory and other observations 
As discussed in the introduction, a theoretical treatment of the equations of motion 

which is valid for a sphere on a surface in a linear shear flow (with 1 < a+ < 10) and 
which can be used to calculate the lift force has not been achieved yet. Nevertheless it 
is interesting to compare our measurements with a number of theoretical expressions 
valid at lower values of a+. 

In figure 11 our experimental data are plotted together with the theoretical ex- 
pressions which were discussed in the introduction. Again, it has to be stressed that 
these theoretical results are derived under the assumption that a + G l ,  whereas in the 
experiments a+ = 1. First, these expressions are rewritten in a dimensionless form 
using the friction velocity (u,) and the kinematic viscosity (v). Using V = ax and 
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FL+ = 6 . 4 6 ( ~ + ) ~ .  (5.1) 

FL+ = 9 . 2 2 ( ~ + ) ~ .  (5.2) 

The expression of Leighton & Acrivos (1985) in dimensionless form reads 

In addition we plot in figure 11 the experimental data on the lift force obtained by 
Hall (1988). Put in non-dimensionless form they are 

FL+ = 2 0 . 9 ( ~ + ) ~ . ~ ~ .  (5.3) 

We should emphasize here that the data of Hall were obtained for a+ > 3. Neverthe- 
less, the power law (5.3) has an exponent close to the value found with our results. 
As a result we feel able to conclude that the value of the exponent in the power law 
that describes the lift force, F L  as function of a+, seems to lie close to 2. In contrast, 
the theoretical expressions (5.1) and (5.2) for FL+ predict higher exponents, i.e. 3 or 
even 4. 

The dependence of the lift force on (a+)2 may be tentatively explained by the 
following simple dimensional argument. Let us assume that in the region near a+=l 
viscous forces are still important (for a+=l the viscous and the inertia forces are of 
the same order since a+ is a Reynolds number), but that the fundamental property 
of Stokes flow, i.e. time reversibility, is no longer appropriate. In that case we would 
expect that the only parameters of influence are a, v and duldy. In other words the 
inertial forces are assumed to be negligible so the density drops from the parameter 
list. Based on this choice of characteristic parameters it then follows by dimensional 
analysis that FL - pva2du /dy  which in dimensionless form leads to F: - (a+)2. The 
higher power of F L  in terms of a+ in (5.1) and (5.2) follows from the fact that in the 
Stokes limit F - a2 cannot exist because of time reversibility (i.e. the coefficient in a 
series expansion of FE in terms of a+ becomes identically zero for the quadratic term) 
and thus higher-order terms (which include inertia) must be taken into account. Our 
results imply that at a+ = 1 the quadratic term can no longer be neglected. 

As another possible explanation for the discrepancy between theory and experiment, 
we note again that the velocity in the viscous sublayer is highly non-stationary, 
whereas the solutions of the Stokes flow are by definition valid for stationary flow. 
This non-stationary behaviour can influence the lift force in an unknown way, e.g. by 
non-stationary vorticity diffusion (Lovalenti & Brady 1995). 

Only the measurements of Hille et al. (1982) and Radecke & Schulz-Dubois (1988) 
provide some additional data on the fluctuating component of the lift force, but only 
for relative large Reynolds numbers (0( 100)). Nevertheless, their results suggest that 
the probability curve of the lift force is skewed more to the right (positive skewness) 
as the velocity increases, which is consistent with our experiments. 

6. Summary and conclusion 
A novel experimental set-up has been developed and built with which it is possible 

to measure the mean and the fluctuating lift force on a small sphere (diameter about 
100 pm) fixed on a flat plate and embedded in the viscous sublayer of a turbulent 
boundary layer. The sphere is attached to a flexible silicium cantilever placed flush to 
the measuring plate in such a way that only the particle protrudes into the viscous 
sublayer. The deflection of the cantilever, which is a measure of the lift force, is 
accurately measured with an optical focus detection system. 
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The data for the lift force were obtained in a turbulent boundary layer for 0.3 < 
a+ < 2. The mean lift force seems to follow the relationship: 

FL+ = (56.9 1.1)(a+)1.87*0.04. (6.1) 

This result for this lift force is rather close, as far as the exponent is concerned, to 
the results obtained by Hall (1988) who used a quite different experimental set-up. 

Experiments performed with a larger sphere also follow a power law with a similar 
exponent but with a slightly smaller coefficient. However, owing to several problems, 
we consider this latter experiment as less trustworthy. 

In all cases the exponent of the power law is close to 2, which implies that the 
mean dimensionless lift force is proportional to (a+)2. This is in contradiction with 
theoretical results based on Stokes flow valid for very small values of a+, which 
predict FL+ - (a+)4. 

The measurements of the fluctuating lift force give a distribution which is positively 
skewed, i.e. to large positive values, and has a kurtosis larger than 3. This means that 
the particle occasionally experiences a very large positive lift forces, which e.g. may 
lead to lift up and consequently to entrainment in the flow. The values of the skewness 
and kurtosis agree reasonably well with the same statistics obtained from near-wall 
velocity measurements and from wall-shear stress measurements. This suggests that 
the lift force is indeed related to the velocity shear. 
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